Engineering Mathematics
(AM-102, Dec-07)
Note: Section A is compulsory. Attempt any five questions from section B \& C taking at least two questions from each Section.

Section-A

1. a). Define linear independence of vectors
b) Define Hermitian matrix with suitable example.
c) Check the equation $\left(3 x^{2}+2 e^{y}\right) d x+\left(2 x e^{y}+3 y^{2}\right) d y=0$ for exactness.
d) Fine the particular integral of the equation $4 y^{\prime \prime}-4 y^{\prime}+y=e^{x / 2}$
e) Find the complementary function of the equation $y^{\prime \prime}+4 y^{\prime}+3 y=x \sin 2 x$.
f) Find $\mathrm{v}^{\prime}(\mathrm{t})$, given that $\mathrm{v}(\mathrm{t})=\left(\cos \mathrm{t}+\mathrm{t}^{2}\right)(\mathrm{t} i+j+2 k)$
g) Evaluate $\int_{C} x^{2} y d s$, where C is the curve defined by $x=3 \operatorname{cost}, y=3 \sin t$ for the interval $0 \leq \mathrm{t} \leq п / 2$.
h) Two dice are tossed once. Find the probability of getting an even number on the first dice.
i) Check the correctness of the statement, "Mean of a binomial distribution is 3 and variance is $5^{\prime \prime}$.
j) Explain Type I and Type II errors.

Section-B

2. If $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$, then show that $A^{n}=A^{n-2}+A^{2}-I$, for $n \geq 3$. Hence find A^{50}.
3. Obtain the general and as well as singular solution of the non-linear equation

$$
y=x y^{\prime}+\left(y^{\prime}\right)^{2}
$$

4. Solve the system of equations

$$
(2 D-4) y_{1}+(3 D+5) y_{2}=3 t+2, \quad(D-2) y_{1}+(D+1) y_{2}=t
$$

5. A scratched elastic horizontal string has one end fixed and a particle of mass m is attached to the other. Find the equation of the motion of the particle given that I is the natural length of the string and e is its elongation due to weight mg . Also find the displacement s of particle when initially $s=0, v=0$.

Section-C

6. (a) find the normal vector and the equation of the tangent plane to the surface $z=\sqrt{x^{2}+y^{2}}$ at the point $(3,4,5)$.
(b) Find the work done by the force $F=-x y i+y^{2} j+z k$ in moving a particle over the circular path $x^{2}+y^{2}=4, z=0$ from $(2,0,0)$ to $(0,2,0)$.
7. Verify strokes theorem for the vector field $v=(3 \mathrm{x}-\mathrm{y}) i-2 \mathrm{yz}^{2} j-2 y^{2} z k$, where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=16, z>0$.
8. In a distribution which is exactly normal, 12% of the items are under 30 and 85% are under 60. Find the mean and standard deviation of the distribution. (Area under normal curve for $0 \leq z \leq 0.38$ is 1.1750 and for $0 \leq z \leq 0.35$ is 1.0365)
9. Annual rainfall at a certain place is normally distributed with mean 45 cm . The rainfalls for the last five years are $48 \mathrm{~cm}, 42 \mathrm{~cm}, 40 \mathrm{~cm}, 44 \mathrm{~cm}$ and 43 cm . Can it be concluded that the average rainfall during the last five years is less than the normal rainfall?
(Given that $\mathrm{t}_{0.05}$ for $\mathrm{v}=2.776$)
